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Abstract. Super-strength, lightweight materials used in bullet-proof vests, high-performance
cables and tires, and stealth airplanes are built from liquid crystalline polymer (LCP) fibers. The
remarkable strength properties are dominated by molecular alignment achieved as a result of the
complex interactions at play in fiber processes. The fiber manufacturing process begins with a high
temperature liquid phase of rigid rod macromolecules, whose orientation couples to the strong elon-
gational free surface flow. The flow exits at a prescribed radius and velocity (v0), tapers and cools
as it evolves downstream, and solidifies along some free boundary, below which a take-up velocity
(v1 > v0) is imposed at a fixed location. Our goal in this paper is a model for this process which re-
alistically couples the hydrodynamics, the LCP dynamics, and the temperature field, along with the
free surface and boundary conditions. Moreover, we aim for a model, by necessity complex, that pro-
vides nontrivial fiber process predictions and that admits a linearized stability analysis of steady fiber
processes. We first generalize three-dimensional Doi–Edwards averaged kinetic equations to include
temperature-dependent material behavior and a coupled energy equation. From this formulation
we generalize previous isothermal hydrodynamic, isotropic viscoelastic, and anisotropic viscoelastic
models, incorporating temperature-dependent material response. The model, its nontrivial bound-
ary value solutions, and their linearized stability are presented, along with the translation of these
mathematical results, to industrially relevant issues of fiber performance properties and bounds on
stable spinning speeds.
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1. Introduction. Models for steady fiber spinning (depicted in Figure 1) of
isotropic polymer melts are well developed, beginning with the work of Matovich
and Pearson [30], who introduced a heuristic derivation of isothermal viscous liquid
fiber models. Many refinements have followed of both mathematical and physical
importance; we note developments for viscous [12, 36] and isotropic viscoelastic [2, 5,
11] constitutive laws and for thermal effects [25, 27, 28, 39, 45], and numerous other
references cited therein.

Our interest in this paper is in a model that couples thermal effects and anisotropic
viscoelasticity to the standard hydrodynamic thin-filament equations [5, 36]. The solu-
tions we focus on are nontrivial steady states of the two-point boundary value problem
for fiber processes, as stated in the abstract. The model consists of a system of cou-
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Fig. 1. A schematic diagram of a single fiber in a spinning process.

pled nonlinear PDEs (for the fiber radius, axial fluid velocity, fiber temperature, and
an orientation order parameter) in one space dimension (the axis of the filament),
with a variety of important material and processing parameters. This complexity
is unavoidable if one wants to model actual thermotropic liquid crystalline polymer
(TLCP) spinlines: the material is viscous, elastic, and anisotropic, and each of these
rheological properties varies with temperature. The process couples inertia, gravity,
free surface effects, and upstream and downstream boundary conditions. Previous
models have isolated limited physical competitions (e.g., thermal viscous fibers [41] or
isothermal LCP fibers [20, 21]), but the goal here is to provide a realistic comprehen-
sive model and point out how the complex hydrodynamic, thermal, and anisotropic
elastic effects of TLCPs interact in concert. We deduce the leading order balance
equations for a slender fiber flow from a nondimensional scaling based on industrially
relevant scales for LCPs. The perturbation method follows closely the analysis de-
scribed in detail in [4, 5, 20] for isothermal axisymmetric fibers. This derivation is a
natural next step in the slender, longwave asymptotic analysis of inviscid [38], viscous
[12, 24, 36], and isotropic viscoelastic [4, 5] liquid fibers.

In order to model TLCPs, we first have to extend the three-dimensional (3-D)
Doi theory [6] to include thermal material dependence. The full slender fiber model
then follows in a straightforward, albeit quite tedious, generalization of [20, 21, 34].

We remark that the usefulness and purpose of industrial spin models is threefold:
first, to infer spun-fiber performance properties for given material properties and
processing conditions; second, as a tool to target performance properties by varying
material behavior or the process; and third, to determine bounds on how fast the
process can run.

Performance properties (e.g., elastic modulus) are dominated by, and inferred
from, the final anisotropic degree of orientation of the spun fiber; the mesoscale mea-
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sure of average molecular orientation is the uniaxial nematic order parameter s. This
order parameter is directly related to fiber birefringence, ∆n, by

s = ∆n/∆nmax,(1.1)

where ∆n is the experimentally measured birefringence of the LCP melt and ∆nmax is
the maximum birefringence possible for the amorphous LCP melt. It is a remarkable
fact that industry spin models since 1969 [30] were developed solely to predict the
spun-fiber birefringence, ∆n = s∆nmax. Yet prior to the coupling of anisotropic
constitutive laws [21, 34], the standard practice in industry was to invoke an empirical
stress-optical law from rubber network theory to infer birefringence a posteriori, as
follows. First a viscous nonisothermal spin model [23] produces axial stress near glass
transition, τaxial(zg), from which birefringence is inferred:

∆n = Copt τaxial(zg) + Co,(1.2)

where Copt is a stress-optical coefficient (a material property) and Co is a constant.
The anisotropic LCP model of [21, 34] reproduces the empirical stress-optical law
(1.2) in the weakly ordered limit, s ∼ 0, which is applicable to weakly birefringent
materials like polyethylene terephthalate (PET). At full capacity, though, i.e., for
strongly birefringent materials like LCPs, our model computes the entire nonlinear
evolution of birefringence in the spinline, as it interacts with hydro- and thermo-
dynamical effects.

There is a second fundamental advance of the model presented here. The lin-
earized stability of steady thermal fiber processes which undergo liquid to solid phase
changes has been prohibited by a peculiar feature of previous models and codes
[23, 26]. Namely, the flow was modeled as a two-phase flow. Above glass transi-
tion temperature (θg) the full hydrodynamic and thermal equations are enforced. For
temperature below the glass transition (θ < θg) the fiber is modeled as a rigid solid
fiber, i.e., the hydrodynamic equation is simply v ≡ v1. Mathematically, this corre-
sponds to a discontinuous gradient in the system of equations at the free boundary
z = zg where θ(z) = θg. Therefore a linearization of the steady state profile does not
yield a well-defined operator on which to compute eigenfunctions and corresponding
growth rates. Below we propose a single-phase model (analogous to a phase field
model [8, 42]) that removes this arbitrary condition. We show that when the material
is accurately characterized, the single- and two-phase models agree—i.e., the liquid
fiber smoothly approaches the constant take-up velocity at the free boundary where
θ approaches θg. We then proceed to implement a linearized stability analysis and
code for nontrivial steady TLCP fiber processes. Predictions of the critical take-up
speed (so-called draw ratio) are then given as a function of processing conditions.

We remark that in no actual spin process is there any evidence of a discontinuity
in velocity gradient at the glass transition free boundary. We therefore assert that a
fair benchmark of any thermal fiber model and associated material characterization
is the condition that the velocity smoothly approaches the imposed take-up speed as
the material reaches glass transition temperature. Such benchmarks were satisfied for
our model only after we modified the material parameters provided by colleagues at
Hoechst–Celanese Corporation. Figures 2–6 illustrate this point.

We emphasize that this paper represents an intermediate modeling advance by ad-
mitting temperature effects only to the extent that one-dimensional (1-D) models and
derivations remain self-consistent. As noted by Vassilatos, Schmelzer, and Denn [39]
and Wang and Forest [41], the 1-D perturbation theories are based on a slenderness
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Fig. 2. Typical isothermal (dotted) and nonisothermal (dashed, solid) steady spinning solutions
from a two-phase model. All parameter values are fixed at order one values: α = 5, Re = 0.2, 1/W =
1/F = Λ0 = 1, St = ω = 1, N = 4, σd = 0.5, θg = 0.8, E =1 (dashed curve), and E =17 (solid curve).
Boundary conditions are φ(0) = v(0) = θ(0) = 1, s(0) = 0.5, v(1) = 10. The dotted curves correspond
to the isothermal solution, where ∆θ = 0, θambient = θmelt; the solid and dashed curves correspond
to ∆θ = 0.5, i.e., θambient = .5 θmelt.

assumption which requires weak radial dependence in all physical quantities (veloc-
ity, pressure, and temperature). The standard perturbation theories break down in
the presence of rapid surface cooling, which generates significant radial temperature
gradients relative to axial gradients.

As noted in [26, 39, 41], standard 1-D models are necessarily limited to small Biot
numbers, i.e., thermal conduction has to dominate surface cooling. These conditions
are met in modern spinlines within the shrouded part of the spinline, where the
temperature is sustained high enough to delay solidification and allow the elongational
flow, orientation, and heat conduction to dominate. Models for unshrouded segments
of a spinline require either a full two-dimensional (2-D) steady temperature resolution
[10, 37, 39, 41, 44] or nonstandard 1-D perturbation theory [26]. For isothermal
spinning flows, a full 2-D axisymmetric steady simulation for LCPs was given recently
by Mori, Hamaguchi, and Nakamura [32] using the Doi equations [13] in the quadratic
closure approximation. To our knowledge, there are no full simulations of free surface
TLCPs in spinning flows, so the models and results presented here are the first which
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Fig. 3. Steady state variations with respect to the nonisothermal parameter ∆θ, 0 ≤ ∆θ ≤ 0.6
in increments of .06; our single-phase model is employed for these figures in increments of .06. All
material parameter values and the boundary data (Dr = 10) are the same as Figure 2 except that
here the initial orientation is prescribed, s(0) = 0.1, and the viscosity-temperature Griffith number
is prescribed to be a realistic value of E =17. Arrows indicate the direction of increasing ∆θ.

resolve a full coupling of hydrodynamics, microstructure, and thermodynamics in a
fiber spinning flow.

2. 3-D model formulation. We first provide a temperature-dependent gener-
alization of the 3-D Doi equations for flows of LCPs as given by [6] and [34]. This step
in modeling the thermal rheological behavior of TLCPs is nontrivial; we have used
the public literature, industry reports, and private consultation with staff rheologists
of Hoechst–Celanese Corporation. We note that temperature-dependent density vari-
ations of TLCPs are modeled here through the LCP stress and orientation dynamics,
but not in mass conservation.

Incompressibility condition.

∇ · v = 0.(2.1)

Conservation of momentum.

ρ
d

dt
v = ∇ · τ + ρg,(2.2)
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Fig. 4. Comparison of one-phase and two-phase models for different Griffith numbers E. The
dotted lines denote the solutions of the two-phase model, while the solid lines denote the solutions
of the one-phase model. All other material parameter values and boundary data are the same as
Figure 2.

where ρ is the density of the polymeric liquid, v is the velocity vector, τ is the total
stress tensor, ρg is the external force due to gravity, and d

dt (·) denotes the material

derivative ∂
∂t (·) + v · ∇(·). Density is assumed constant, so that thermal expansion is

presumed a weak effect.
The nematic order is resolved in terms of a second-moment average, 〈m⊗m〉, of

the rigid-rod molecular direction, m, where the average is with respect to a probability
distribution function. The mesoscale orientation tensor is then given by

Q = 〈m ⊗ m〉 − 1

3
I,(2.3)

which is a traceless, symmetric second-order tensor. A moment closure rule yields
the following flow-orientation coupled system [13, 14, 16, 6], where the molecular
orientation induces fluid stresses, and the fluid motion in turn drives the orientation
dynamics.
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Fig. 5. Change of solution profile due to the change of the activation energy E, where E goes
from 1 to 21 with an increment of 5. The left column corresponds to the solutions to the standard
two-phase model, while the right column provides solutions to the one-phase model. All the other
parameters are the same as those in Figure 2.
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Fig. 6. Change of solution profile due to the change of polymer relaxation thermal rate param-
eter ω, where ω goes from 1 to 21 with an increment of 5. The left column shows the solutions to
the standard two-phase model, the right column solutions to the one-phase model. Here E =1. All
the other parameters are the same as those in Figure 2.
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Constitutive equation for stresses.

τ = −pI + τ̂ ,

τ̂ = τ̂iso + τ̂aniso,

τ̂iso = 2η(θ)D,

τ̂aniso = 3ckθ[(1−N/3)Q −N(Q · Q) +N(Q : Q)(Q + I/3)

+2λ(θ)(∇vT : Q)(Q + I/3)],

(2.4)

where D is the rate-of-strain tensor, D = 1
2 (∇v +∇vt), and p is the scalar pressure.

In (2.4) η(θ) is modeled as the effective isotropic viscosity, presumed to obey an
Arrhenius relation,

η(T ) = η0 e
E/R (1/θ−1/θ0),(2.5)

where E is the activation energy, R is the gas constant, and η0 is the effective isotropic
viscosity for LCPs at an experimental temperature θ0 above the melting point. The
term τ̂aniso in (2.4) corresponds to orientational stress, where c is the number of poly-
mer molecules per unit volume, and λ(θ) is the relaxation time of the LCP molecules
associated with rotation of the rigid rod-like molecules. We also posit an Arrhenius
relation for relaxation time,

λ(θ) = λ0 e
ω (1/θ−1/θ0),(2.6)

where λ0 is the relaxation time of the LCP at the temperature θ0, and ω is a parameter
(units of temperature) to be determined from experiments. In addition, N is a di-
mensionless measure of the LCP density c which characterizes the strength and shape
of the short-range intermolecular potential (see Appendix C), k is the Boltzmann
constant, and θ is absolute temperature.

Without loss of generality, we select the same experimental temperature θ0 in
(2.5) and (2.6), which we later choose as the melt temperature for convenience, i.e.,
θ0 = θmelt. Any other choice of experimental temperatures amounts to a simple
rescaling in which the products η0 e

−E/(Rθ0) and λ0 e
−ω/θ0 are independent of θ0 in

accordance with these Arrhenius forms.

Orientation tensor equation (anisotropic elastic coupling).




d
dtQ − (∇vT · Q + Q · ∇v) = F (Q) +G(Q,∇v),

F (Q) = −σd/λ(θ){(1−N/3)Q −N(Q · Q) +N(Q : Q)(Q + I/3)},

G(Q,∇v) = 2
3D − 2(∇vT : Q)(Q + I/3).

(2.7)

Here σd is a dimensionless parameter describing the anisotropic drag that a molecule
experiences as it moves relative to the solution; 0 ≤ σd ≤ 1, where σd = 1 is the
isotropic friction limit and σd = 0 is the highly anisotropic limit. Note that F char-
acterizes the orientation dynamics independent of flow, whereas G describes the flow-
orientation interaction.

Energy equation.

ρC
dθ

dt
= τ̂ : D −∇ · q,(2.8)
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where C is the specific heat per unit mass and q is the heat flux vector. The term
τ̂ : D models viscous heating, which is a weak effect but it is included for the sake of
completeness.

Heat loss boundary condition.

q · nf = −h(θ − θa),(2.9)

where θa is the ambient temperature and h is the heat loss coefficient. We use a
Fourier law for the heat flux q,

q = −K∇θ,(2.10)

where K is the thermal conductivity.
Note. Standard two-phase models [23, 26, 41] apply a simplified momentum

equation once θ ≤ θg. In particular, the velocity is assumed constant in the solid
phase:

dv

dz
= 0.(2.11)

The equations for the orientation tensor and the energy equation still apply. Note
that the energy (2.8) decouples when v = constant, so that one may integrate the
steady-state temperature exactly. Then the temperature solution yields a variable
coefficient, uncoupled orientation (2.7). This structure will be evident in the 1-D
model to follow.

Axisymmetric free surface and corresponding boundary conditions. We adopt
cylindrical coordinates (r, θ, z) with the axial direction coincident with the direction
of gravity, and with orthonormal basis er, eθ, ez (Figure 1). The velocity is given by

v = (vr, 0, vz),(2.12)

where we assume vθ = v · eθ = 0. This torsionless assumption is for simplicity and
may be generalized to allow for axisymmetric twist in the flow. The axisymmetric
free surface is given by

r = φ(z, t).(2.13)

The kinematic boundary condition is

d

dt
(r − φ(z, t)) = 0;(2.14)

i.e., the free surface convects with the flow.
The kinetic boundary conditions are

(τ − τa)nf = −σsκnf ,(2.15)

where nf is the unit outward normal of the free surface (2.13), σs is the surface tension
coefficient, κ is the mean curvature of the free surface given by

κ = φ−1 (1 + φ2
z)

−1/2 − φzz (1 + φ2
z)

−3/2,(2.16)

and τa is the ambient stress tensor. This condition indicates that the shear stress is
continuous across the free surface in the tangential direction whereas the normal stress
is discontinuous with jump proportional to surface tension times mean curvature. We
assume that the ambient stress τa arises only from a constant pressure (pa), i.e.,

τa = −paI.(2.17)

Effects of air drag are neglected, but may be inserted through τa.
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3. 1-D spin model for TLCP filaments. To nondimensionalize the 3-D model,
the following characteristic scales are identified:

r0, z0, t0, v0, θmelt;

these are the characteristic transverse and axial length scales, characteristic time
and velocity scales, and characteristic temperature (chosen as melt temperature),
respectively. Upon nondimensionalizing the full set of 3-D equations in cylindrical
coordinates (see [20, 21]), the following collection of dimensionless parameters arises:

ε = r0/z0, η̃0 = 1/Re = η0t0/ρz
2
0 , 1/W = σs/ρr0v

2
0 , 1/F = gt20/z0,

N, λ̃0 = λ0/t0, θ̃g = θg/θmelt, α = 3ckθmelt/ρv
2
0 ,

σd, Pe =
ρCz2

0

Kt0
, Br =

η0z
2
0

Kθmeltt20
, Bi = hr0

K ,

St = hz0
ρCv0r0

, E = E
Rθmelt

, ω̃ = ω/θmelt, θ = 1− θa/θmelt.

(3.1)

Each of these parameters is important and carries physical information about the
geometry, the flow, or the material rheology.

• Geometric parameter: ε is the aspect ratio of the fiber, the fundamental
small parameter upon which slender (0 < ε << 1) longwave axial equations
are deduced from [20]; a typical value is ε = 0.01.

• Standard hydrodynamic parameters: Re,W,F are the Reynolds, Weber, and
Froude numbers, which respectively parametrize effective isotropic viscosity,
surface tension, and gravity, each relative to inertia.

• LCP material parameters: α parametrizes the molecular kinetic energy per
unit volume relative to inertial energy per unit volume; from the constitutive
law one sees also that α characterizes the molecular stress relative to inertial
stress; the combination αλ̃0 characterizes the relaxational stress due to molec-
ular rotation relative to inertial stress; σd is the anisotropic drag parameter
and σd/λ̃0 parametrizes anisotropic drag on polymer molecular motion rela-
tive to the solvent; N is a polymer density parameter that enters prominently
in the intermolecular excluded-volume potential (defined below (3.4), again
in Appendix C, then depicted in Figure 12 as a function of N).

• Thermal parameters: Pe is the Peclet number which is a measure of specific
heat relative to thermal conductivity; Br is the Brinkman number describ-
ing viscous heating relative to thermal conductivity; Bi is the Biot num-
ber characterizing the heat loss relative to thermal conductivity; St is the
Stanton number, which is the dimensionless heat transfer coefficient, and
Bi = St · Pe · ε2; E is the Griffith number quantifying the degree of viscosity
variation with temperature.

• Processing parameter: A nonisothermal parameter θ is introduced to mea-
sure the degree of nonisothermality. When θa = θmelt, then θ = 0 and our
model reduces to the isothermal case of [21]. We will vary the parameter ∆θ
to study the energy effects on our previous isothermal LCP spin model predic-
tions [21]. Note that in dimensional units, given ∆θ, the ambient temperature
is θa ≡ (1−∆θ) θmelt.

The extension of the perturbation formalism of Forest, Wang, and Bechtel [20] to
TLCPs is straightforward. The leading order orientation tensor representation is
provided in Appendix A, and the corresponding stress tensor components are given in
Appendix B. The only new ingredient is the temperature expansion, which is uniform
in r and ε to leading order. Next we need to pick a physical regime such that these
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expansions, when applied to the full 3-D equations, yield consistent 1-D slender fiber
equations. The following equations follow when all nondimensional parameters in
(3.1) are presumed O(1) with respect to ε except the Biot number which must be
o(1) with respect to ε, e.g., Bi ∼ O(ε2). This means we confidently model only weak
surface cooling relative to thermal conduction, as mentioned in the introduction.

1-D thermal flow-orientation models for axisymmetric LCP filaments.
We give the minimum set of coupled equations which govern the leading order ap-
proximation of each unknown: φ, the free surface radius; v, the axial velocity ; u, the
radial velocity ; p, the pressure; s, the uniaxial order parameter ; θ, the temperature.
(All ∼ overbars on nondimensional parameters are dropped from here on.)

LCP melt phase (θ ≥ θg).




(a) (φ2)t + (vφ2)z = 0,

(b) (φ2v)t + (φ2v2)z =
1
F φ

2 + 1
W φz + (φ2(R−1

eff (s, θ)vz + αθU(s)))z,

(c) st + vsz = vz(1− s)(2s+ 1)− σd

Λ(θ)U(s),

(d) u = −vz/2,
(e) p = 1

W φ−1 − eE(1/θ−1) vz/Re− 1
3αθU(s) + 2

3αΛ(θ)θs(1− s)vz,

(f) θt+ vθz=
1
Peφ

−2(φ2θz)z−2St φ−1 (θ − 1+θ)+Br
Pe (R

−1
eff (s, θ)vz+ αθU(s)) vz,

(3.2)

where Λ(θ) is the scaled LCP relaxation time

Λ(θ) = Λ0e
ω(1/θ−1);(3.3)

Reff (s, θ) is an effective 1-D flow-orientation Reynolds number,

R−1
eff (s, θ) = 3 eE(1/θ−1)/Re+ 2α θΛ(θ) s2,(3.4)

consisting of a Newtonian contribution (3 eE(1/θ−1)/Re) and an orientation contribu-
tion (2α θΛ(θ) s2); and U(s) = s(1 − N/3(1 − s)(2s + 1)) defines the uniaxial bulk
free energy,

∫
U(s)ds. The terms proportional to N arise from the Maier–Saupe inter-

molecular potential. For isothermal flows absent of gravity (1/F = 0), the zeroes of
U correspond to order parameter equilibria associated with constant cylindrical LCP
filaments, the stability of which are characterized in [20, 19] for various regimes; in
the gravity-driven flows considered in this paper there are no constant equilibria.

LCP quasi-solid phase (θ < θg) of standard two-phase models.




(a) vz = 0,
(b) st + vsz = − σd

Λ(θ)U(s),

(c) u = 0,
(d) φz = 0,
(e) p = − 1

3αθU(s),
(f) θt + vθz =

1
Peθzz − 2St φ−1(θ − 1 +θ).

(3.5)

Remarks on the quasi-solid phase model. Since v ≡ constant for θ < θg, and v(1)
is prescribed, v(θg) must equal v(1). Given v ≡ v(1) in this phase, the temperature
equation (3.5f ) can be integrated exactly, subject to boundary conditions. Next,
given θ(z) for zg ≤ z ≤ 1, the steady state orientation equation (3.5b) likewise can
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be integrated in explicit quadrature form. Moreover, the behavior of s in the quasi-
solid phase is immediately deduced from this simple ODE, completely determined by
sgn(U(s)). Thus, one needs only to observe U(s(zg)) to infer the orientation behavior
after glass transition. Since the definition of surface tension in the quasi-solid state is
not clear, we further drop the term (W φ)−1 in the pressure expression (3.5e) which
corresponds to a purely orientation-induced stress contribution.

The traditional two-phase model for nonisothermal spinning applies the melt
phase equations (3.2) for θ ≥ θg and the rigid fiber equations (3.5) for θ < θg.
The new one-phase model applies the melt phase equations (3.2) unconditionally.

A salient feature of the LCP melt phase is that the order parameter s and tem-
perature θ couple to the axial velocity v and filament radius φ to form a system of
four coupled nonlinear PDEs. These are the slender longwave equations for TLCP
fibers; they reproduce previous models [7, 12, 25, 30, 34, 36, 38] in the appropriate
physical limits.

Another physical quantity of interest is the axial stress τaxial which is given by

τaxial = τ̂zz − p.(3.6)

From (3.2e), (3.5e), and Appendix C, the axial stress τaxial is

Melt phase (θ ≥ θg) τaxial = R−1
eff (s, θ) vz + α θ U(s)− 1

Wφ
,(3.7)

Quasi-solid phase (θ ≤ θg) τaxial = τaxial(zg) + α [θ(z)U(s(z))− θ(zg)U(s(zg))],(3.8)

where zg is the free-boundary location where glass transition occurs,

zg = {z|θ(z) = θg; θ(z) > θ(zg) ∀z < zg}.(3.9)

Equation (3.7) is an LCP stress-optical relation. In the left-hand side of expression
(3.8), the first term τaxial(zg) corresponds to the locked-in stress at solidification,
whereas the second term α[θ(z)U(s(z))−θ(zg)U(s(zg))] represents small orientational
stress relaxation due to cooling and slight changes in the orientation order parameter.
There is experimental evidence from NMR studies of heat-treated spun fibers for
some weak reordering of the molecular structure [43]. Some processes prevent such
annealing behavior by immersing the fiber in a water bath.

The stress-optical relation (3.7) yields a fundamental relation between the axial
fiber stress and the “optical” quantity s. For a uniaxial nematic, the order parameter
s is the normalized birefringence, (1.1).

Our model therefore calculates birefringence all along the spinline as it couples
to the thermal hydrodynamics of fiber spinning. This model forms the foundation
for a prediction of spun fiber performance properties as a function of material and
processing parameters. In an industrial code, one couples empirical correlations for
air drag and heat loss, together with detailed “in-house” material characterization.
Those details are not relevant for our purposes here and are deferred to an engineering
study of this model [22].

4. Steady state solutions. Steady states for fiber processes satisfy a two-point
boundary value problem; refer to Figure 1. We remark that our model is well-posed
with the actual imposed spinline conditions. Consistent with our earlier nondimen-
sionalization, fixed upstream conditions are placed on fiber radius, velocity, and tem-
perature:

φ(0) = 1, v(0) = 1, θ(0) = 1.(4.1)



1190 M. GREGORY FOREST, HONG ZHOU, AND QI WANG

Two additional boundary conditions are free processing parameters to be speci-
fied/varied in the simulations below:

s(0), v(1).(4.2)

The upstream degree of orientation (s(0)) is a function of spinneret design, whereas
the take-up speed (v(1) = draw ratio = Dr) is a measure of process speed and
throughput.

Depending on the physical regime, one may need another downstream temperature-
related condition:

• If Pe−1 ∼ O(1) with respect to the slenderness parameter ε, then we require
another boundary condition at z = 1, which is selected by the assumption
that axial thermal conduction is negligible downstream, i.e.,

∂(φ2 θz)

∂z
(1) = 0.(4.3)

• If Pe−1 ∼ o(1) with respect to ε, then the temperature equation is reduced
to first-order and no boundary condition on θ(1) is allowed.

The boundary condition (4.3) yields a smooth transition in boundary-
value-problem solutions between these two physical regimes. To solve the steady state
boundary value problem (3.2), (4.1)–(4.3), we use the public domain code TWPBVP
generated by Cash and Wright [9], which is based on implicit Runge–Kutta formulas
and adaptive mesh refinement.

4.1. Typical steady state solutions: Influence of thermal effects. We
begin with typical steady state solutions, first comparing isothermal and nonisother-
mal two-phase model behavior (Figure 2); two selected thermal states are given (our
single-phase model is implemented below). The parameters are chosen to illustrate
distinct model behavior, not to model any specific physical process. From Figure 2
we make the following observations. Note the isothermal solution is identical with
Figure 1 in [21].

• A liquid-to-solid phase transition occurs in both thermal spinning states
where the nonisothermal parameter is set to ∆θ = 0.5, which is typical of
spinning processes. Two different Griffith numbers are chosen, E = 1 and E =
17. Thus, for both material-dependent viscosity functions, the fiber cools be-
low glass transition temperature within the spinline.

• Note the nonisothermal, low Griffith number (E = 1) dashed curves indicate
a discontinuity in the velocity gradient and fiber slope at the glass transition
location. The high Griffith number (E = 17) solid curves lessen the jump in
gradients, but the two-phase model equations force this unphysical transition.

• The orientation order parameter s in the thermal case develops more rapidly
during the melt phase and significantly more rapidly at physically relevant
large Griffith numbers, then levels off as glass transition is approached. The
degree of orientation (s) slightly decays after the glass transition in the ther-
mal flow. The spinning flow yields higher orientation than is possible in equi-
librium, so while the rigid fiber cools, there is some orientation relaxation
back toward the flow-independent equilibrium. This observation is consistent
with experimental observation on heat-treated annealing of spun TLCP fibers
[46].

Figure 3 displays the dependence of the typical steady state with respect to the
nonisothermal parameter ∆θ, which we vary from 0.0 to 0.6; our single-phase model is
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employed. The one-phase and two-phase models yield nearly identical qualitative be-
havior in this parameter regime, which retains the more physical Griffith number E =
17, but discontinuous gradients persist at glass transition location in the two-phase
model solutions. The free surface radius φ, the axial velocity v, and the orientation
order parameter s exhibit thermal sensitivity to ∆θ. The salient feature of Figure 3
is • there is a dramatic change in concavity of the velocity profile as ∆θ increases

from 0 to 0.6, in response to the thermal coupling.
As ∆θ increases (i.e., the ambient becomes cooler), the effective viscosity gets larger
(a viscous hardening effect) which we show (Appendix D) is responsible for the change
of concavity in the velocity profile.

4.2. Comparison of two-phase and one-phase models. In Figure 4 we
compare the thermal solutions of the standard two-phase model and our one-phase
model where ∆θ = 0.5. As evident from Figure 4,

• the discrepancy between the two models is measurable for small Griffith num-
bers and becomes less significant for large Griffith numbers. The one-phase
model removes the unphysical discontinuity in velocity gradient and fiber
slope.

Figures 5 and 6 further compare the thermal solutions of the two models by
varying the Griffith number E and polymer relaxation thermal rate parameter ω,
respectively.

• As either E or ω increases, the velocity profile undergoes a change in concavity.
• Again, for large E or ω, the two models are qualitatively consistent.

In Appendix D we give a detailed explanation of this velocity-shape phenomenon,
which is observed in all melt spinning processes and is not captured by isothermal
models. This phenomenon is analogous to the experimental observations by Burgman
[7] where the shape of the upper glass jet changes from a concave jet shape to the
expanded jet shape. However, his result is for the jet profile near the upper boundary,
while our result is for the jet velocity downstream of the spinneret. One can see
from our analysis that there is a critical Griffith number or relaxation thermal rate
parameter above which the concavity of the velocity profile switches. This amplifies
the importance of accurate material characterization, where we note that E ∼ 17
is appropriate for the thermotropic LCP Vectra produced by the Hoechst–Celanese
Corporation [43].

Figures 4, 5, and 6 compel us to employ the one-phase model rather than the
standard industrial two-phase model [23]. The one-phase model has the critical ad-
vantage that solutions have continuous gradients at the glass transition free boundary,
which not only is consistent with experiments but further enables one to perform a
linearized stability analysis of these steady boundary value states. From now on, we
restrict ourselves to the one-phase model.

4.3. Thermal effects on spun-fiber birefringence. Recall from formula (1.1)
that the downstream degree of orientation, s(1), yields a prediction of the spun-
fiber birefringence: ∆n = ∆nmax · s(1). This fiber property is fundamental to fiber
producers; it forms the basis for empirical predictions of fiber performance, such as
elongation-to-break and elastic modulus [33].

Figure 7 summarizes the single characteristic, spun-fiber orientation s(1), or
equivalently the spun-fiber birefringence ∆n = ∆nmax · s(1), for a two-parameter
family of steady state solutions. We vary the nonisothermal parameter, ∆θ, and the
spinning speed or draw ratio, Dr. The following features are noteworthy.
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Fig. 7. Thermal response in the spun-fiber orientation, s(1) = ∆n/∆nmax, due to changes in
the nonisothermal parameter ∆θ for a wide range of draw ratio Dr. Here E =17, ω = 1. All the
other parameters are the same as in Figure 3. The draw ratio Dr varies from 5 (lower curve) to 45
(top curve) in increments of 5. The arrow indicates the direction of increased Dr.

• For each fixed draw ratio, the spun-fiber orientation drops in response to a
cooler ambient temperature (∆θ larger).

• For fixed ambient temperature (i.e., fixed ∆θ), the spun-fiber orientation
increases with higher speed spinning (larger Dr).

• The order of both effects is reduced at higher spinning speeds, but it is well
known that TLCPs cannot be spun at high speeds because of crystallization
effects [17, 29, 31] so the range of Dr from 5 to 15 is most relevant to existing
processes. We will revisit the limit on Dr in the stability analysis of section 5.

4.4. Scaling behavior of the glass transition location with the thermal
parameter ∆θ and draw ratio Dr. Figure 8(a) indicates the effect of ambient
temperature on the glass transition location zg as defined in (3.9) for four selected draw
ratios, Dr = 5, 10, 20, and 30, respectively. These figures arise by first computing
a two-parameter (Dr,∆θ) family of boundary value solutions, then extracting the
spinline location, zg, of the free boundary of glass transition for each steady state. To
better illustrate the effect of ambient temperature, here we pick the Stanton number
St = 2.0 and all the other parameters are the same as in Figure 3. Recall θa =
θmelt(1−∆θ). Figure 8(a) conveys

• the critical value of ∆θ, above or equal to which there is a phase transition,
is about 0.276 for Dr = 5, 0.312 for Dr = 10, 0.360 for Dr = 20, 0.384 for
Dr = 30. For example, at a draw ratio of 10, the ambient temperature must
be .688θmelt or lower for the fiber to solidify within the spinline.

• for fixed draw ratio, the phase transition point zg moves significantly up-
stream as the ambient temperature is lowered. For instance, when Dr is
fixed to be 10, zg = 0.97 for ∆θ = 0.312, zg = 0.6957 for ∆θ = 0.396,
zg = 0.45 for ∆θ = 0.576.
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Fig. 8. (a) Glass transition location zg as a function of the nonisothermal parameter ∆θ. (b)
Variations of zg as a function of Dr due to changes in ∆θ: .3 ≤ ∆θ ≤ .6 in increments of .06, with
the arrow indicating the direction of increasing ∆θ.

• for fixed ambient temperature, reading vertically in Figure 8(a) confirms the
downstream movement of glass transition as the process speeds up (higher
Dr).

In Figure 8(b), zg is plotted as a function of draw ratio Dr corresponding to
different values of ∆θ. When ∆θ is smaller than 0.3, there is no liquid-solid phase
transition for all Dr varying from 5 to 60. When ∆θ is increased to 0.3, spinline
glass transition occurs for all Dr between 5 and 10. As ∆θ increases, the range of Dr
widens for which glass transition takes place. By ∆θ = 0.6, all Dr up to 60 experience
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spinline glass transition.
Figure 8(a) might be used as follows. Suppose a spinline is designed so that

glass transition occurs near zg = 0.8, or eight-tenths of the spinline length. Draw
a horizontal line at zg = 0.8 in Figure 8(a) and one can easily find the ambient
temperature versus draw speed so that zg = 0.8; e.g., for Dr = 5, ∆θ = 0.316
corresponding to θambient = 68.4% θmelt; for Dr = 10, ∆θ = 0.355 corresponding
to θambient = 64.5% θmelt; for Dr = 20, ∆θ = 0.413 corresponding to θambient =
58.7% θmelt; for Dr = 30, ∆θ = 0.453 corresponding to θambient = 54.7% θmelt.

Figure 8(b) provides a wider range of information. For example, zg = 0.8 is
achieved for (Dr = 3.5, θambient = 70% θmelt), (Dr = 10.5, θambient = 64% θmelt),
(Dr = 38, θambient = 52% θmelt).

In fiber spinning, it is usually desirable to know the location, z∗, where a particular
process reaches a preset target property. This information might then, for example,
be used to ensure that the target fiber property is reached prior to glass transition.
In Figure 9 we select the targeted fiber property to be the degree of LCP orientation,
s = ∆n/∆nmax. We choose several target values of s = 0.7, 0.8, 0.9, and 0.95 that
the spun fiber must satisfy. We calculate the critical location, z∗, where s(z∗) = 0.7,
0.8, 0.9, and 0.95, respectively, for the starting value s(0) = 0.1. Figure 9(a) shows
how the location z∗ varies due to variations in ∆θ for different targeted properties.
Figure 9(b) shows the change of the location z∗(∆θ), where s(z∗) = 0.9, due to the
change of the draw ratio. Figure 9(c) shows the movement in z∗ with spinning speed
(Dr) for selected ambient cooling conditions (∆θ). These figures allow one to explore
how the location of desired spun fiber birefringence varies with ambient temperature
and draw ratio.

4.5. Thermal effects on axial force at glass transition and at take-up.
Recall (3.7), (3.8) which describe the stress-optical relations for LCP fibers in the
melt and quasi-solid phases. We now focus on the axial force in the fiber, Faxial,

Faxial = φ2 τaxial,(4.4)

at the glass transition (if it occurs) and at the take-up location (we report predictions
of axial force rather than stress because that is what can be measured online; see
[35]). Figure 10(a) shows thermal influence on fiber axial force at the glass transition
location zg and at the take-up location z = 1 for Dr = 5, 10, 20, 30, respectively.
Figure 10 shows how the axial force at take-up varies with draw ratio and the ambient
temperature.

5. Linearized stability. In this section we consider dynamical issues, namely
the stability of the nontrivial fiber steady states described above. As discussed in the
introduction, our single-phase model allows the numerical bound on stable spinning
speed with all other conditions fixed. The stability analysis consists first of (numer-
ically) finding eigenvalues ωj and corresponding eigenfunctions fj(z), j = 1, 2, . . . of
the linearization of (3.2) about a given boundary value solution (φ, v, s, θ)(z). Lin-
earized solutions take the form u = eiωjtfj(z), so that the real parts of the eigenvalues
ωj , denoted νj , are the linearized growth rates. Let

νmax = maxj≥1{νj}.(5.1)

One deduces linearized stability of the steady state (φ, v, s, θ)(z) if νmax < 0, linearized
instability if νmax > 0, and neutral stability if νmax = 0. The stability or instability of
any given steady state is completely characterized by the single diagnostic νmax. The
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critical draw ratio Dr∗ is thereby defined as the draw ratio at which νmax = 0. In
other words, the critical draw ratio is the critical spinning speed above which a given
steady state solution is linearly unstable and below which it is linearly stable. (There
is no a priori reason that νmax does not oscillate about 0; we have not observed this
behavior in these calculations, however.)

For isothermal LCPs, Forest, Wang, and Bechtel [21] have already studied lin-
earized stability and how material parameters and processing parameters affect the
critical draw ratio. Here we devote our attention to thermal effects on critical draw
ratio.

To do so, we first formulate linearized stability analysis as an eigenvalue problem
as indicated above. Then we solve the eigenvalue problem numerically and use a
shooting method to compute the critical draw ratio. We have used 50 and 100 spa-
tial grid points in each computation and then applied a second order extrapolation
to achieve higher order accuracy for the critical draw ratio. This analysis extends
the work of Burgman [7] and Geyling and Homsy [24] to more complex constitutive
behavior.

Figure 11 depicts the critical draw ratio Dr∗ as a function of the nonisothermal
parameter ∆θ. As shown in Figure 11, the critical draw ratio grows with ∆θ. As ∆θ
increases from 0 to 0.4, Dr∗ increases from 37.2 to 269.8. These predictions clearly
indicate that

• cooling increases stable spinning speeds for these parameter regimes.

The unusually high critical draw ratio is specific to this parameter regime, which is
not relevant to a specific material.

6. Conclusion. We have incorporated temperature-dependent material behav-
ior and an energy equation into the 3-D LCP governing equations of Bhave et al.
[6]. From this thermotropic LCP 3-D formulation, we have derived a 1-D thermal
thin-filament model for LCPs and proposed a new single-phase model all the way
through glass transition. Thermal effects on steady spinning solutions, the down-
stream orientation order parameter (i.e., spun-fiber birefringence), the glass transition
location, and the axial force are deduced. These predictions are fundamental to fiber
performance properties. Furthermore, bounds on stable spinning speeds have been
generalized from the isothermal studies in [21].

The goals met in this paper are

• the construction of a sophisticated mathematical model, derived from 3-D bal-
ances of mass, momentum, energy, and free surface conditions, which resolves
the coupling of hydrodynamics, a free surface, microstructural dynamics of
LCPs, and thermodynamics;

and

• the application of this model as a tool to explore how material and process
conditions influence performance properties and bounds on how fast processes
may be run.

The transfer of such a model to an industrial application requires yet another layer of
development. For example, the fiber features of interest to experimentalists or indus-
trial practitioners do not consist of the straightforward numerical solution of a two-
point boundary value problem. Rather, one must pursue a relationship between solid
fiber performance properties (such as tenacity, modulus, and elongation-to-break) and
the scientific model prediction of birefringence and axial force at solidification. Today,
empirical relations are employed, though clearly there is a need for improvement.
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Fig. 9. The spinline location z∗ where a target degree of orientation is achieved, as a func-
tion of the nonisothermal parameter ∆θ: (a) s(z∗; ∆θ) = 0.7, 0.8, 0.9, 0.95, respectively, with the
downstream draw ratio v(1) = 10. (b) The downstream draw ratio has the values Dr = 10, 20, 30, re-
spectively, while the target orientation is fixed at s(z∗) = 0.9. (c) Variations of z∗ where s(z∗) = 0.9
as a function of Dr due to changes in ∆θ: 0 ≤ ∆θ ≤ 0.6 in increments of 0.03. The arrow points in
the direction of increasing ∆θ. The upstream degree of orientation is fixed at s(0) = 0.1 throughout.
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Fig. 10. (a) Axial force Faxial evaluated at z = 1 (solid curve) and at z = zg (circle) as a
function of ∆θ for selected values of draw ratio. (b) Variations of Faxial(1) as a function of draw
ratio Dr due to changes in ∆θ, 0 ≤ ∆θ ≤ 0.6. The arrow indicates the direction of increasing ∆θ,
starting with the isothermal case. All the parameters are the same as in Figure 8.

This requirement in itself presents a major challenge to connect in a fundamental sci-
entific way how mechanical properties transfer during phase transitions.

Appendix A. Orientation representation. In this paper we consider only
uniform orientation behavior. At this order of resolution, the orientation tensor Q is
given by [13, 14, 16]

Q = s(n3 ⊗ n3 − I/3),(6.1)
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Fig. 11. Critical draw ratio as a function of the nonisothermal parameter ∆θ. Here all the
parameters are the same as in Figure 3.

where n3 = ez; the scalar uniaxial order parameter s is related to the polymeric
direction m by

s = 3
2 〈(m · n3)

2〉 − 1
2 ,− 1

2 ≤ s ≤ 1.(6.2)

The order parameter s describes the average degree of orientation between the molec-
ular direction m and n3. The projection of m onto the plane orthogonal to n3 is
isotropic. When 0 < s ≤ 1, the liquid crystal is said to exhibit prolate uniaxial
symmetry; when −1/2 ≤ s < 0, one infers oblate uniaxial symmetry; s = −1/2 cor-
responds to all molecules aligned in the plane orthogonal to n3; s = 1 corresponds to
parallel alignment of n3 and m; finally, s = 0 corresponds to an isotropic state.

These relations yield the special uniaxial representation for Q:

Q(z, t) = s(z, t) diag[−1/3,−1/3, 2/3],(6.3)

where diag[−1/3,−1/3, 2/3] is a 3× 3 diagonal matrix.

Appendix B. Explicit representation of tensor quantities. From (6.3) in
Appendix A, one has

Q · Q = s2 diag[1/9, 1/9, 4/9],(6.4)

Q : Q =
2

3
s2,(6.5)

∇v : Q = s vz,(6.6)
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which, together with (2.4), yield

τ̂ = diag[τ̂rr, τ̂θθ, τ̂zz],(6.7)

τ̂rr = −η(θ)vz − c k θ U(s) + 2 c k θ λ(θ) vz s (1− s),(6.8)

τ̂θθ = τ̂rr,(6.9)

τ̂zz = 2 η(θ) vz + 2 c k θ U(s) + 2 c k θ λ(θ) vz s (2s+ 1).(6.10)

Appendix C. Shape of bulk free energy for variable concentration pa-
rameter N . Define

V (s) =

∫
U(s) ds =

∫
s [1−N/3 (1− s) (2s+ 1)] ds

=
1

2
s2 +N/3

(
1

2
s4 − 1

3
s3 − 1

2
s2
)
,(6.11)

where we have imposed V (0) = 0. Figure 12 depicts V (s) for different values of N .
The important feature is the number of critical points of V (s), i.e., zeroes of U(s), v.
N. Note that for low density (e.g., N = 2) or higher temperature, only the isotropic
equilibrium s0 = 0 exists. As N increases or temperature decreases, the single-well
potential for N < 8/3 deforms into a double-well potential with isotropic (s0 = 0)
and two other equilibria that vary with N .

Appendix D. A simple explanation of the change of velocity profile.
Let us consider the steady state solution of (3.2) in our paper. To show the effect
of varying viscosity and also make the analysis as simple as possible (so that we can
pinpoint the dominant factor which is most responsible for the phenomenon we have
observed), we ignore all other terms except the one involving the viscosity.

The steady state equation simplified as such looks like

(
R−1
eff

vz
v

)
z
= 0.(6.12)

From (3.3) and (3.4), it is clear that the effective viscosity is roughly of the form

R−1
eff = c2 e

c1/θ,(6.13)

where c1 is an effective Griffith number.
Since the temperature θ is a decreasing function of z, 1/θ increases with z. A

simple increasing function of z is the linear function of the form

1

θ
= c3 z + c4.(6.14)

To make (6.12) easy to solve, we assume that 1/θ is given by (6.14). Substituting
(6.14) into (6.13) and renaming the new parameters as c1 and c2, one has

R−1
eff = c2 e

c1 z.(6.15)
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Fig. 12. The 1-D Maier–Saupe excluded-volume potential V(s) for different values of N .

Integrating (6.12) with respect to z yields

R−1
eff

vz
v

= c3,(6.16)

or equivalently,

(ln(v))z = c2 e
−c1 z,(6.17)
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where the integration constant c3 has been absorbed into the parameter c2.
Integrating (6.17), one obtains

ln(v(z)) = ln(v(0)) +

[
c2 (1− e−c1)

c1

]
1− e−c1 z

1− e−c1
.(6.18)

The boundary conditions

v(0) = 1,(6.19)

v(1) = Dr (draw ratio)(6.20)

determine the coefficient in brackets in (6.18)

[
c2 (1− e−c1)

c1

]
= ln(Dr).(6.21)

Therefore, the solution of (6.12) with boundary conditions (6.19) and (6.20) is

v(z) = exp

[
ln(Dr)

1− e−c1 z

1− e−c1

]
.(6.22)

A plot of v(z) for different values of parameter c1 is shown in Figure 13.
From Figure 13, we make the following observations.
• The velocity profile is concave up for small c1 and the velocity profile is

concave down for large c1.
For small c1 (c1 << 1), we have

1− e−c1 z

1− e−c1
= z +O(c1)(6.23)
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and

v(z) = exp [ln(Dr) z] .(6.24)

It is clear that v(z) is concave up for small c1.

For large c1,
1−e−c1 z

1−e−c1
is a very concave down function.

From the form of R−1
eff (see (3.3) and (3.4)), we know that the parameter c1

is proportional to E and/or ω. So it is not surprising that the velocity profile
is concave down for large E and/or ω.

• The solution v(z) is independent of the parameter c2. The solution of the
simplified (6.12) is totally determined by the parameter c1. Again from the
form of R−1

eff , we know that the parameter c2 is inversely proportional to the
Reynolds number. So it not surprising that the velocity profile is virtually
unaffected by the Reynolds number.

To verify our assumption in (6.15), in Figure 14 we plot log(R−1
eff ) as a function

of z for various values of E and ω (based on our numerical simulations). Indeed,
log(R−1

eff ) behaves as a linear function of z, which validates our assumption (6.15).
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